Rask og enkel simulering av____ emballasjens barriere og innholdets holdbarhet

Ole Jan Myhre (<u>olejan.myhre@norner.no</u>) Market Manager and Packaging advisor

Norner AS, Asdalstrand 291 NO-3960 Stathelle, Norway www.norner.no

66 We provide strategic advisory, innovation projects and testing services

Polymer producers

Laboratory testing services

Oil and gas

Consumables

Chemical industry

Building and infrastructure

Norner is...

- Industrial plastics and packaging institute
- International innovation company
- Clients through the plastic value chain

50 Scientists, polymer technologists, end user specialists, lab and conversion engineers.
International innovation projects
4000m² Scientific Laboratories

• Our vision

Innovation through Insight

Norner Service Offerings

Strategic Advisory

- Business & Market strategy
- Creating Added Value
- Cost reduction programs
- Innovation Organisation & Tools

Innovation Projects

- Technology Projects
- Product Development
- Multi-client & Sponsored
- Studies & Feasibility projects

Technical Services

- 3rd party testing
- Standardised testing
- Application testing
- Tailor made verification

Emballasjeutvikling og testing

Prototyper, resepter, kvalitetssikring, testing, analyser, og kompetanse

Barrierestruktur - prinsipp

Key barrier properties

- Prevent ingress of oxygen
 - Delay growth of microorganisms and fungi
 - Prevent oxidation reactions
- Prevent ingress of moisture
 - Keep dry foods dry
- Keep desired balance of oxygen and carbon dioxide
 - Extend shelf life of respirating vegetables and fruits
- Prevent loss or ingress of flavours and solvents
 - Prevent loss or change of aroma and taste
 - Prevent loss of perfumes in household chemicals
 - Prevent drying of solvent based products (e.g. paint)

Barriere emballasje i alle varianter !

Industries Laboratories

Testing

Facts

Contact us

About the

calculators

limitations

Disclaimer

· Assumptions and

Send us your request

> norner.no / Testing / Packaging industry / Oxygen and Water Vapor Transmission...

Oxygen and Water Vapor Transmission Rate Calculator

Additive testing

Norsok M-501

Failure analysis

Third party test lab

Plastic pipe testing

Automotive testing

Packaging industry

Plastic Films

Product performance testing

Migration testing

Case study - Superior MDO film

Sibyl Material Database

Odour Testing

Oxygen and Water Vapor Transmission Rate Calculator

Norner is an independent, industrial Polymer Institute for the plastics and material industries.

- · We offer free use of our OTR and WVTR calculators.
- · This simulation models estimates the oxygen and water transmission rate of plastics packaging material like PP, PET and EVOH.
- · Barrier properties of co-injection multilayer and in-mould-label solutions can be studied and evaluated.
- · The combination of geometrical options, permeability properties and environmental conditions provides an useful tool when working with the design, development and application of plastic packaging.
- · The OTR and WVTR values are calculated separately.

OTR Calculator

Film	Cup (Frustum)	
Cuboid	Bottle	
WVTR Calcula	tor	
Film	Cup (Frustum)	
Cuboid	Bottle	

Calculation steps

- 1. Define geometry parameters (e.g length, radius, height).
- 2. Choose materials (define layer material and thickness).
- 3. Define environmental conditions (temperature, humidity).
- 4. Push calculate.
- 5 View and evaluate calculation results.

> norner.no / Consumables / Packaging solutions / Free OTR and WVTR Barrier Calculator

Pac	kaq	ina	SO	lutions

Free OTR and WVTR calculator

Packaging Material

Database - Sibyl

Food regulations

Rheology

Plastic processing

Laboratory services

Strategic advisory Biobased polymers

analysis

Migration testing

Free OTR and WVTR Barrier Calculator

Pharmaceutical packaging

The combination of geometrical options, permeability properties and environmental conditions provides an useful tool for design and development.

• The OTR and WVTR values are calculated separately.

packaging material like PP, PE, PET, PA and EVOH.

OTR Calculator

and evaluated.

Norner offers free use of OTR and WVTR Barrier Calculator. You can access via the below icons.

• Barrier properties of coextruded, co-injection multilayer and in-mould-label solutions can be studied

This simulation models estimates the oxygen and water transmission rate of various plastics

WVTR Calculator

Calculation basics and assumptions

- The OTR/WVTR calculator is a tool for simulations in the design phase
- Instrumented testing of permeability and actual testing of shelf life is still essential but might be limited/reduced.
- Permeability is a process of absorption, dissolving and desorption
- Transport of a gas is a diffusive process and follows Ficks law
- Solubility of a gas in through the polymer follows Henrys law
- The driving force is the difference in partial pressure on both sides
- Temperature dependency calculation is based on Boltzman weighting
- Effect of humidity is taken into account via an empirical expression

- •Easy to use •Flexible
- •Many formats
- Many polymers
- •Custom values
- processing atory services aceutical packaging is gic advisory sed polymers

WVTR Calculator

В **CALCULATE &** SIMULATE

f

Y

in

- •Your pack spec.
- Specify parameters
- •Calculate
- Vary conditions
- Generate data
- •Create curves

Packaging shapes for simulation

Options for OTR and WVTR simulations

- Selection of standard materials
- Insert custom OTR/WVTR values
- Flexible number of layers
- Adjustable thickness for any layer
- Vary time
- Vary temperature
- Vary humidity
 - Outside
 - Inside
- Optional IML for Injection moulded cups and cuboids.

Bar	rier Calculato	r - OTR		
Cup Geor	(Frustum) ^{netry}		(H2)	
Radi	us 1		R1 CTT	
Radi Heig	us 2 ht		cm cm	
Laye	rs		cm	
	Material	Permeability [(ml·mm)/(m ² ·atm·dav)]	Thickness [µm]	
1	EVOH 32% V		•	
2	EVOH 32% T			
3	EVOH 32%		<u> </u>	
③ Ao IML l	dd Iayer ayers			
	Material	Permeability	Thickness	
		[(ml·mm)/(m ² ·atm·day)]	[hw]	
1	EVOH 32% •		•	
2	EVOH 32% •		•	
3	EVOH 32%		9	
③ Ad Labe	dd layer I coverage (of area w	rithout top)	100 %	
Test	conditions			
Tem	perature	1	days °C	
Rel.	humidity	0	%	
Oxyg	jen level	20.9	%	

Calculation Cases

Simulating WVTR properties

Preventing cereals from softening

Polyethylene Cereal Liner

3 layer film: HD/HD/LD Each layer of 10µm Assume active film surface of pack is 30x50cm Assume volume = 2 litre

Barrier Calculator - WVTR

Geometry

Length	30	cm
Width	50	cm

Layers

Material		Permeability	Thickness	
		[(ml·mm)/(m ² ·atm·day)]	[µm]	
	HDPE(d964)		10	0
1	HDPE(d964)		10	0
Color March	LDPE (d914)		10	٢

Add layer

Test conditions

Time	1	days
Temperature	20	°C
Rel. humidity outside	70	%
Rel. humidity inside	0	%
Calculate	11	

Repeat calculations for each condition

	Material	Permeability	Thickness	
		[(ml·mm)/(m ² ·atm·day)]	[µm]	
1	HDPE(d964)		10	0
2	HDPE(d964)		10	0
3	LDPE (d914)		10	0

Add layer

Test conditions

Time	730	days
Temperature	20	°C
Rel. humidity outside	20	%
Rel. humidity inside	0	%
Calculate		

Results

Total thickness	L	0.030	mm
Permeability, overall	P	1088.665	(ml·mm)/(m ² ·atm·day)
Area (excluded top)	A	0.150	m ²
Volume, water vapor	q	18271.621	ml
Transmission rate	TR	25.030	ml/(package-day)
Transmission rate	TR	166.864	ml/(m ² ·day)
Transmission rate	TR	0.134	g/(m ² ·day)

WVTR vs. time and relative humidity

→ 100 % **→** 70 % **→** 50 % **→** 20 %

Simulating OTR

Vacuum packaged meat

Vacuum package of fresh red meat

- Blown coextruded 7 layer film
 - 40μmPE / 4μmTie / 5μmPA6 / 3μmEVOH32 / 5μmPA6 / 4μmTie / 40μmPE
- Active surface area = 25x40cm²

Calculations

	Material	Permeability	Thickness	
		[(ml·mm)/(m ² ·atm·day)]	[µm]	
1	LDPE 💌		40	0
2	LDPE 💌		4	0
3	PA6 Cast 💌		5	0
4	EVOH 32%		3	0
5	PA6 Cast 💌		5	0
6	LDPE 💌		4	0
7	LDPE 🗸		40	0

Add layer

Test conditions

Time	3 <mark>,</mark> 5	days
Temperature	2	°C
Rel. humidity	65	%
Oxygen level	20.9	%
Calculate		

Results

L	0.101	mm
P	0.065	(ml·mm)/(m ² ·atm·day)
A	0.100	m ²
q	0.047	ml
TR	0.013	ml/(package-day)
TR	0.135	ml/(m ² -day)
	L P A q TR TR	L 0.101 P 0.065 A 0.100 q 0.047 TR 0.013 TR 0.135

OTR vs. time and storage temperature

Simulating OTR

Vacuum formed tray with seal on lid

Package of sliced cooked meat

- Add two calculations
- Lid film: 12µm PET / 4µm PVDC / 50µm PE
- Bottom: 200µm APET / 25µm PE / 5µm PA / 25µm PE
- Volume of vacuum formed container = 3dl

OTR vs. time/temp for each part

The lid

OTR vs. time and storage temperature

Shelf life

- Definition
 - The period between the manufacture and the retail purchase of food product, during which time the product is of satisfactory quality in terms of nutritional value, flavour, texture, appearance and safety
- Complex dependency of
 - the products "activity"
 - the environment in distribution esp. temperature
 - the package properties esp. permeability
- Microbiological and/or enzymatic deterioration (aerobe and anaerobe)
- Oxidation e.g. Lipidic oxidation of fish or Rancidification of fatty foods
- Moistening, drying, taste/odour, colour
- Package inner atmosphere O₂, H₂O, CO₂, N₂

Benefits of OTR / WVTR calculator

Emballasje er high tech!

Takk for meg 🙂

Assumptions

- The top of the containers is assumed to be 100 % tight.
- Wall thickness of the container and IML barrier film is constant.
- Steady state condition of permeation
- Diffusion in one direction only.
- The concentration-distance relationship through the polymer is linear (follows Henrys Law).
- The permeability coefficient is a constant of the material.
- The OTR model assumes 0 Vol% oxygen inside container initially.
- The container is empty.

Limitations

- Calculated values will have some deviation from real values.
- OTR will have best accuracy at temp. 23 ± 5 °C and < 65 % RH.
- The permeability humidity corrections in the OTR model are performed for OPA6, PA6, PET and EVOH based on curve fitting permeability values at 20 °C.
- The WVTR model will have best accuracy at 20 30 °C.
- Permeability is a function of temperature, following an Arrhenius type of equation.
- The vapour pressure of water is a function of temperature and modelled using the Antoine equation (WVTR model).
- Influence of processing conditions (e.g orientation and crystallinity) and conversion technique is not considered in detail.

